The latest from NEON

NEON, the National Ecological Observatory Network, is a major research instrumentation asset that the NSF has built for scientists investigating how the environment and ecosystems interact at a continental scale. Here is the latestIMG_1104.jpg from Observatory Director and Chief Scientist, Sharon Collinge. It’s really good to see that this project is coming to a successful fruition.

There’s no photo credit on the image because it’s my photo. I took it at the NEON tower at Harvard Forest in central Massachusetts. Among many data products being produced, one of the most exciting are carbon flux measurements using the eddy-flux methodology. These are important because they provide a window into an ecosystem as it essentially breathes, just like we do. And that has enormous implications for climate change.

The location of this particular NEON tower (one of many across the United States) is particularly interesting because there is also a very long time series (25 years or so) of such measurements produced by the Ameriflux Network. If NEON can take advantage of such older measurements in a way that calibrates rigorously between the two systems, the power of continental scale (3-dimensions) will be enriched by a fourth dimension, time.

Spiral Development

When I was at NSF, we had a big problem child of a project, NEON, the National Ecological Observatory Network. Comprised of cyber-infrastructure, robotic sensors, human field sampling and airborne platforms extending from the Arctic Ocean to Puerto Rico, the nearly half-billion dollar project had chronic issues with costs and schedules. To fix those problems, the NSF brought in USAF Lt. General James Abrahamson  because he had been the fixer-in-chief on projects as diverse as the F-16 and the Space Shuttle.

One of the things that the General taught us to do, as far as fixing NEON, was to use spiral development: build a little, test a little, build a little more, test a little more. We learned that one of the root problems with the NEON design was that it had been “frozen in place” back in the first years of the new century and hence was technologically obsoleted before we finished construction. Spiral development was one of the key approaches we used to fix NEON.

Here’s a new article in Space News on how that approach is being currently deployed in the USAF. It strikes me that this approach should be used in many science R&D areas where the time-line is lengthy and the consequences for failure are large.